skip to main content


Search for: All records

Creators/Authors contains: "Tabor, Christopher E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Integrated circuits utilize networked logic gates to compute Boolean logic operations that are the foundation of modern computation and electronics. With the emergence of flexible electronic materials and devices, an opportunity exists to formulate digital logic from compliant, conductive materials. Here, we introduce a general method of leveraging cellular, mechanical metamaterials composed of conductive polymers to realize all digital logic gates and gate assemblies. We establish a method for applying conductive polymer networks to metamaterial constituents and correlate mechanical buckling modes with network connectivity. With this foundation, each of the conventional logic gates is realized in an equivalent mechanical metamaterial, leading to soft, conductive matter that thinks about applied mechanical stress. These findings may advance the growing fields of soft robotics and smart mechanical matter, and may be leveraged across length scales and physics.

     
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. Liquid metals such as gallium alloys have a unique potential to enable fully reconfigurable RF electronics. One of the major concerns for liquid-metal electronics is their interaction with solid-metal contacts, which results in unwanted changes to electrical performance and delamination of solid-metal contacts due to atomic diffusion of gallium at the liquid/solid interface. In this paper, we present a solution to this problem through way of liquid-metal/liquid-metal RF connections by implementing Laplace barriers, which control fluid flow and position via pressure-sensitive thresholds to facilitate physical movement of the fluids within the channels. We demonstrate RF switching within the channel systems by fabricating, testing, and modeling a reconfigurable RF microstrip transmission line with integrated Laplace barriers which operates between 0.5–5 GHz. This approach opens the potential for future all-liquid reconfigurable RF electronic circuits where physical connections between solid and liquid metals are minimized or possibly eliminated altogether. 
    more » « less
  5.  
    more » « less